These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Rapamycin sensitizes glucocorticoid resistant acute lymphoblastic leukemia CEM-C1 cells to dexamethasone induced apoptosis through both mTOR suppression and up-regulation and activation of glucocorticoid receptor.
    Author: Guo X, Zhou CY, Li Q, Gao J, Zhu YP, Gu L, Ma ZG.
    Journal: Biomed Environ Sci; 2013 May; 26(5):371-81. PubMed ID: 23611130.
    Abstract:
    OBJECTIVE: To explore the role of glucocorticoid (GC) receptor (GR) in rapamycin's reversion of GC resistance in human GC-resistant T-acute lymphoblastic leukemia (ALL) CEM-C1 cells. METHODS: CEM-C1 cells were cultured in vitro and treated with rapamycin at different concentrations with or without 1 μmol/L dexamethasone (Dex). 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) test was performed to assess cell proliferation. The cell cycle and cell apoptosis were analyzed by flow cytometry. The expression of GRα mRNA was determined by real-time quantitative RT-PCR. The expression of GR, p-70S6K, Mcl-1, and Bim proteins was detected by Western blot. RESULTS: When incubated with rapamycin at different concentrations, CEM-C1 cells showed significant growth inhibition in a time- and concentration-dependent manner. The growth inhibition was synergistically increased when CEM-C1 cells were treated with rapamycin plus 1 μmol/L Dex. CEM-C1 cells treated with rapamycin alone showed no apparent apoptosis, and were arrested at G0/G1 phase. After the treatment with Dex plus rapamycin, CEM-C1 cells demonstrated apparent apoptosis and increased the cell cycle arrested at G0/G1 phase. Rapamycin combined with Dex up-regulated GRα, phosphorylated GR(p-GR), and pro-apoptotic protein Bim-EL in CEM-C1 cells, but inhibited the expression of p-p70S6K, a downstream target protein of mTOR (mammalian target of rapamycin). CONCLUSION: After the treatment with rapamycin plus Dex, Dex resistant CEM-C1 cells induce growth inhibition and apoptosis. The underlying mechanism may involve inhibition of the mTOR signaling pathway and also be associated with up-regulation of GR expression and activation of GC-GR signaling pathway.
    [Abstract] [Full Text] [Related] [New Search]