These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Adenine and guanine 8CH exchange in nucleic acids: resolution and measurement by Raman optical multichannel analysis.
    Author: Lamba OP, Becka R, Thomas GJ.
    Journal: Biopolymers; ; 29(10-11):1465-77. PubMed ID: 2361156.
    Abstract:
    Deuterium exchange of 8C protons of adenine and guanine in nucleic acids is conveniently monitored by laser Raman spectrophotometry, and the average exchange rate so determined [kA + kG] can be exploited as a dynamic probe of the secondary structure of DNA or RNA [J. M. Benevides and G. J. Thomas, Jr. (1985) Biopolymers 24, 667-682]. The present work describes a rapid Raman procedure, based upon optical multichannel analysis, which permits discrimination of the different 8CH exchange rates, kA of adenine and kG of guanine, in a single experimental protocol. For this procedure, simultaneous measurements are made of the intensity decay or frequency shift in separately resolved Raman bands of adenine and guanine, each of which is sensitive only to 8C deuteration of its respective purine. Resolution of the rates kA and kG is demonstrated for the mononucleotide mixtures, 5'-rAMP + 5'-rGMP and 5'-dAMP + 5'-dGMP, for the polynucleotides poly(dA-dT).poly(dA-dT) and poly(dG-dC).poly(dG-dC), for calf thymus DNA, and for the 17 base-pair operator OR3. We show that the different exchange rates of adenine and guanine, in nucleotide mixtures and in DNA, may also be calculated independently from intensity decay of the composite 1481-cm-1 band, comprising overlapped adenine and guanine components, over a time domain that encompasses two distinct regimes: (1) a relatively more rapid exchange of guanine, and (2) a concurrent slower exchange of adenine. Both methods developed here yield consistent results. We find, first, that exchange of guanine is approximately twofold more rapid than that of adenine when both purines are present in the same structure and solvent environment, presumably a consequence of the greater basicity of the 7N site of guanine. Second, we find that adenine suffers greater retardation of exchange than guanine when both purines are incorporated into a "classical" B-DNA secondary structure, such as that of calf thymus DNA. This finding suggests different microenvironments at the 7N-8C loci of adenine and guanine in aqueous B-DNA. We also confirm that adenine residues of B-form poly(dA-dT).poly(dA-dT) exchange much more slowly than those of other B-DNA sequences, implying a secondary structure for the alternating-AT sequence with unusual stereochemistry in the major groove. The greater resistance of adenine than guanine to 8CH exchange in the B-DNA secondary structure is more evident in high molecular weight calf thymus DNA and in the alternating AT and GC copolymer duplexes than in the smaller 17 base-pair operator OR3.(ABSTRACT TRUNCATED AT 400 WORDS)
    [Abstract] [Full Text] [Related] [New Search]