These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Effect of diindolylmethane on Ca(2+) homeostasis and viability in MDCK renal tubular cells. Author: Fang YC, Chou CT, Chi CC, Lin KL, Li YD, Cheng HH, Lu YC, Cheng JS, Kuo CC, Jan CR. Journal: Hum Exp Toxicol; 2013 Apr; 32(4):344-53. PubMed ID: 23613483. Abstract: The effect of the natural product diindolylmethane (DIM) on cytosolic Ca(2+) concentrations ([Ca(2+)]i) and viability in MDCK renal tubular cells was explored. The Ca(2+)-sensitive fluorescent dye fura-2 was applied to measure [Ca(2+)]i. DIM at concentrations 1-50 μM induced a [Ca(2+)]i rise in a concentration-dependent manner. The response was reduced partly by removing Ca(2+). DIM induced Mn(2+) influx leading to quenching of fura-2 fluorescence. DIM-evoked Ca(2+) entry was suppressed by nifedipine, econazole, SK&F96365 and protein kinase C modulators. In the absence of extracellular Ca(2+), incubation with the endoplasmic reticulum Ca(2+) pump inhibitor thapsigargin (TG) or 2,5-di-tert-butylhydroquinone (BHQ) greatly inhibited DIM-induced [Ca(2+)]i rise. Incubation with DIM abolished TG or BHQ-induced [Ca(2+)]i rise. Inhibition of phospholipase C with U73122 reduced DIM-induced [Ca(2+)]i rise by 50%. At 1, 10, 40 and 50 μM, DIM slightly enhanced cell proliferation. The effect of 50 μM DIM was reversed by chelating cytosolic Ca(2+) with 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid. In sum, in MDCK cells, DIM induced a [Ca(2+)]i rise by evoking phospholipase C-dependent Ca(2+) release from the endoplasmic reticulum and Ca(2+) entry via protein kinase C-sensitive store-operated Ca(2+) channels. DIM did not induce cell death.[Abstract] [Full Text] [Related] [New Search]