These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: In planta analysis of a cis-regulatory cytokinin response motif in Arabidopsis and identification of a novel enhancer sequence.
    Author: Ramireddy E, Brenner WG, Pfeifer A, Heyl A, Schmülling T.
    Journal: Plant Cell Physiol; 2013 Jul; 54(7):1079-92. PubMed ID: 23620480.
    Abstract:
    The phytohormone cytokinin plays a key role in regulating plant growth and development, and is involved in numerous physiological responses to environmental changes. The type-B response regulators, which regulate the transcription of cytokinin response genes, are a part of the cytokinin signaling system. Arabidopsis thaliana encodes 11 type-B response regulators (type-B ARRs), and some of them were shown to bind in vitro to the core cytokinin response motif (CRM) 5'-(A/G)GAT(T/C)-3' or, in the case of ARR1, to an extended motif (ECRM), 5'-AAGAT(T/C)TT-3'. Here we obtained in planta proof for the functionality of the latter motif. Promoter deletion analysis of the primary cytokinin response gene ARR6 showed that a combination of two extended motifs within the promoter is required to mediate the full transcriptional activation by ARR1 and other type-B ARRs. CRMs were found to be over-represented in the vicinity of ECRMs in the promoters of cytokinin-regulated genes, suggesting their functional relevance. Moreover, an evolutionarily conserved 27 bp long T-rich region between -220 and -193 bp was identified and shown to be required for the full activation by type-B ARRs and the response to cytokinin. This novel enhancer is not bound by the DNA-binding domain of ARR1, indicating that additional proteins might be involved in mediating the transcriptional cytokinin response. Furthermore, genome-wide expression profiling identified genes, among them ARR16, whose induction by cytokinin depends on both ARR1 and other specific type-B ARRs. This together with the ECRM/CRM sequence clustering indicates cooperative action of different type-B ARRs for the activation of particular target genes.
    [Abstract] [Full Text] [Related] [New Search]