These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Structural insights into histone demethylase NO66 in interaction with osteoblast-specific transcription factor osterix and gene repression.
    Author: Tao Y, Wu M, Zhou X, Yin W, Hu B, de Crombrugghe B, Sinha KM, Zang J.
    Journal: J Biol Chem; 2013 Jun 07; 288(23):16430-16437. PubMed ID: 23620590.
    Abstract:
    Osterix (Osx) is an osteoblast-specific transcriptional factor and is required for osteoblast differentiation and bone formation. A JmjC domain-containing protein NO66 was previously found to participate in regulation of Osx transcriptional activity and plays an important role in osteoblast differentiation through interaction with Osx. Here, we report the crystal structure of NO66 forming in a functional tetramer. A hinge domain links the N-terminal JmjC domain and C-terminal winged helix-turn-helix domain of NO66, and both domains are essential for tetrameric assembly. The oligomerization interface of NO66 interacts with a conserved fragment of Osx. We show that the hinge domain-dependent oligomerization of NO66 is essential for inhibition of Osx-dependent gene activation. Our findings suggest that homo-oligomerization of JmjC domain containing proteins might play a physiological role through interactions with other regulatory factors during gene expression.
    [Abstract] [Full Text] [Related] [New Search]