These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Effect of geometric nanostructures on the absorption edges of 1-D and 2-D TiO₂ fabricated by atomic layer deposition. Author: Chang YH, Liu CM, Cheng HE, Chen C. Journal: ACS Appl Mater Interfaces; 2013 May; 5(9):3549-55. PubMed ID: 23621320. Abstract: 2-Dimensional (2-D) TiO2 thin films and 1-dimensional (1-D) TiO2 nanotube arrays were fabricated on Si and quartz substrates using atomic layer deposition (ALD) with an anodic aluminum oxide (AAO) template at 400 °C. The film thickness and the tube wall thickness can be precisely controlled using the ALD approach. The intensities of the absorption spectra were enhanced by an increase in the thickness of the TiO2 thin film and tube walls. A blue-shift was observed for a decrease in the 1-D and 2-D TiO2 nanostructure thicknesses, indicating a change in the energy band gap with the change in the size of the TiO2 nanostructures. Indirect and direct interband transitions were used to investigate the change in the energy band gap. The results indicate that both quantum confinement and interband transitions should be considered when the sizes of 1-D and 2-D TiO2 nanostructures are less than 10 nm.[Abstract] [Full Text] [Related] [New Search]