These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Effect of paracetamol use on the modification of the development of asthma by reactive oxygen species genes.
    Author: Kang SH, Jung YH, Kim HY, Seo JH, Lee JY, Kwon JW, Kim BJ, Kim HB, Lee SY, Jang GC, Song DJ, Kim WK, Shim JY, Kim JH, Kang MJ, Yu HS, Yu J, Hong SJ.
    Journal: Ann Allergy Asthma Immunol; 2013 May; 110(5):364-369.e1. PubMed ID: 23622008.
    Abstract:
    BACKGROUND: Recent studies have identified an increase in the prevalence of asthma associated with paracetamol use. OBJECTIVE: To identify the relationship among asthma, biomarkers, genes, and paracetamol use in preschool children. METHODS: We undertook a population-based, cross-sectional survey of 933 preschool children. Asthma status was classified according to medical history and asthmatic symptoms. History of paracetamol use in infancy was recorded. Impulse oscillometry, blood tests for eosinophils and total IgE, and genotyping of NAT2, Nrf2, and GSTP1 polymorphisms by TaqMan assay were conducted. RESULT: Paracetamol use in infancy was associated with an increased risk of treatment for asthma within the previous 12 months. Paracetamol use together with a family history of asthma increased the risk of asthma diagnosis ever, current asthma, and treatment for asthma within the previous 12 months. Gene polymorphisms in NAT2 (rs4271002), Nrf2 (rd6726395), and GSTP1 (rd1695) increased the risk of treatment for asthma within the last 12 months. Eosinophils were significantly elevated in the group with paracetamol use and a family history of asthma; however, the serum total IgE level and IOS did not show any significant difference. CONCLUSION: Paracetamol use in infancy was significantly associated with increased risk of asthma. The association is more significant in genetically susceptible children, related to antioxidant genes, and the effect may be mediated by eosinophilic inflammation.
    [Abstract] [Full Text] [Related] [New Search]