These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Synthesis, spectroscopic, thermal and DFT calculations of 2-(3-amino-2-hydrazono-4-oxothiazolidin-5-yl) acetic acid binuclear metal complexes. Author: Hassan WM, Badawy MA, Mohamed GG, Moustafa H, Elramly S. Journal: Spectrochim Acta A Mol Biomol Spectrosc; 2013 Jul; 111():169-77. PubMed ID: 23624211. Abstract: The binuclear complexes of 2-(3-amino-2-hydrazono-4-oxothiazolidin-5-yl) acetic acid ligand (HL) with Fe(III), Co(II), Ni(II), Cu(II) and Zn(II) ions were prepared and their stoichiometry was determined by elemental analysis. The stereochemistry of the studied series of metal complexes was established by analyzing their infrared, (1)H NMR spectra and the magnetic moment measurements. According to the elemental analysis data, the complexes were found to have the formulae [Fe2L(H2O)8]Cl5 and [M2L(H2O)8]Cl3 (M=Co(II), Ni(II), Cu(II) and Zn(II)). The present analyses demonstrate that all metal ions coordinated to the ligand via O(9), O(11), N(16) and N(18) atoms. Thermal decomposition studies of the ligand-metal complexes have been performed to verify the status of water molecules present in these metal complexes and their general decomposition pattern. Density Functional Theory (DFT) calculations at the B3LYP/6-31G(*) level of theory have been carried out to investigate the equilibrium geometry of the ligand and complexes. Moreover, charge density distribution, extent of distortion from regular geometry, dipole moment and orientation have been performed and discussed.[Abstract] [Full Text] [Related] [New Search]