These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Cross-linked g-C3 N4 /rGO nanocomposites with tunable band structure and enhanced visible light photocatalytic activity.
    Author: Li Y, Zhang H, Liu P, Wang D, Li Y, Zhao H.
    Journal: Small; 2013 Oct 11; 9(19):3336-44. PubMed ID: 23630157.
    Abstract:
    Cross-linked rather than non-covalently bonded graphitic carbon nitride (g-C3 N4 )/reduced graphene oxide (rGO) nanocomposites with tunable band structures have been successfully fabricated by thermal treatment of a mixture of cyanamide and graphene oxide with different weight ratios. The experimental results indicate that compared to pure g-C3 N4 , the fabricated CN/rGO nanocomposites show narrowed bandgaps with an increased in the rGO ratio. Furthermore, the band structure of the CN/rGO nanocomposites can be readily tuned by simply controlling the weight ratio of the rGO. It is found that an appropriate rGO ratio in nanocomposite leads to a noticeable positively shifted valence band edge potential, meaning an increased oxidation power. The tunable band structure of the CN/rGO nanocomposites can be ascribed to the formation of C-O-C covalent bonding between the rGO and g-C3 N4 layers, which is experimentally confirmed by Fourier transform infrared (FT-IR) and X-ray photoelectron (XPS) data. The resulting nanocomposites are evaluated as photocatalysts by photocatalytic degradation of rhodamine B (RhB) and 4-nitrophenol under visible light irradiation (λ > 400 nm). The results demonstrate that the photocatalytic activities of the CN/rGO nanocomposites are strongly influenced by rGO ratio. With a rGO ratio of 2.5%, the CN/rGO-2.5% nanocomposite exhibits the highest photocatalytic efficiency, which is almost 3.0 and 2.7 times that of pure g-C3 N4 toward photocatalytic degradation of RhB and 4-nitrophenol, respectively. This improved photocatalytic activity could be attributed to the improved visible light utilization, oxidation power, and electron transport property, due to the significantly narrowed bandgap, positively shifted valence band-edge potential, and enhanced electronic conductivity.
    [Abstract] [Full Text] [Related] [New Search]