These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Prediction of human metabolism of the sedative-hypnotic zaleplon using chimeric mice transplanted with human hepatocytes.
    Author: Tanoue C, Sugihara K, Uramaru N, Tayama Y, Watanabe Y, Horie T, Ohta S, Kitamura S.
    Journal: Xenobiotica; 2013 Nov; 43(11):956-62. PubMed ID: 23651075.
    Abstract:
    1. Human chimeric mice (h-PXB mice) having humanized liver, constructed by transplantation of human hepatocytes, were evaluated as an experimental model for predicting human drug metabolism. Metabolism of zaleplon in h-PXB mice was compared with that in rat chimeric mice (r-PXB mice) constructed by transplantation of rat hepatocytes. 2. Zaleplon is metabolized to 5-oxo-zaleplon by aldehyde oxidase and to desethyl-zaleplon by cytochrome P450 (CYP3A4) in rat and human liver preparations. 3. Liver S9 fraction of h-PXB mice metabolized zaleplon to 5-oxo-zaleplon and desethyl-zaleplon in similar amounts. However, liver S9 fractions of r-PXB and control (urokinase-type plasminogen activator-transgenic severe combined immunodeficient) mice predominantly metabolized zaleplon to desethyl-zaleplon. 5-Oxo-zaleplon was detected as a minor metabolite. 4. Oxidase activity of h-PXB mouse liver cytosol toward zaleplon was about 10-fold higher than that of r-PXB or control mice. In contrast, activities for desethyl-zaleplon formation were similar in liver microsomes from these mice, as well as rat and human liver microsomes. 5. In vivo, the level of 5-oxo-zaleplon in plasma of h-PXB mice was about 7-fold higher than that in r-PXB or control mice, in agreement with the in vitro data. Thus, aldehyde oxidase in h-PXB mice functions as human aldehyde oxidase, both in vivo and in vitro. 6. In contrast, the plasma level of desethyl-zaleplon in r-PXB and control mice was higher than that in h-PXB mice. 7. These results suggest h-PXB mice with humanized liver could be a useful experimental model to predict aldehyde oxidase- and CYP3A4-mediated drug metabolism in humans.
    [Abstract] [Full Text] [Related] [New Search]