These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Vasohibin-1 expression is regulated by transforming growth factor-β/bone morphogenic protein signaling pathway between tumor-associated macrophages and pancreatic cancer cells.
    Author: Shen Z, Seppänen H, Kauttu T, Vainionpää S, Ye Y, Wang S, Mustonen H, Puolakkainen P.
    Journal: J Interferon Cytokine Res; 2013 Aug; 33(8):428-33. PubMed ID: 23651239.
    Abstract:
    Vasohibin-1 has been detected in endothelial cells as an intrinsic angiogenesis inhibitor. Both tumor-associated macrophages (TAMs) and transforming growth factor-β (TGF-β)/bone morphogenic protein (BMP) signaling have been reported to promote angiogenesis in cancer. However, whether vasohibin-1 expression is regulated by TGF-β/BMP signaling between TAMs and cancer cells remains unclear. The expression of TGF-β1, TGF-β2, BMP-4, and BMP-7 in TAMs and the expression of vasohibin-1, vascular endothelial growth factor-A (VEGF-A), and VEGF-C in two pancreatic cancer cell lines (a nonmetastatic cell line Panc-1 and a distant metastatic cell line HPAF-II) were measured by real-time reverse transcription-polymerase chain reaction (RT-PCR). The TGF-β receptor 1 and BMP receptor 1 were inhibited by the inhibitor SB-431542 and LDN193189, respectively. Thereafter, vasohibin-1, VEGF-A, and VEGF-C expression was detected by real-time RT-PCR. We found that the expression of TGF-β1, TGF-β2, BMP-4, and BMP-7 was upregulated in TAMs cocultured with pancreatic cancer cells. Vasohibin-1, VEGF-A, and VEGF-C mRNA expression in pancreatic cancer cells was upregulated by TAMs. Vasohibin-1 expression in pancreatic cancer cells cocultured with TAMs was upregulated significantly when TGF-β receptors or BMP receptors were inhibited, but VEGF-C expression was downregulated. Therefore, Vasohibin-1 expression is regulated by the TGF-β/BMP signaling between TAMs and pancreatic cancer cells. These results might shed a new light on the antiangiogenesis therapy in the pancreatic cancer.
    [Abstract] [Full Text] [Related] [New Search]