These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: A double signal amplification platform for ultrasensitive and simultaneous detection of ascorbic acid, dopamine, uric acid and acetaminophen based on a nanocomposite of ferrocene thiolate stabilized Fe₃O₄@Au nanoparticles with graphene sheet.
    Author: Liu M, Chen Q, Lai C, Zhang Y, Deng J, Li H, Yao S.
    Journal: Biosens Bioelectron; 2013 Oct 15; 48():75-81. PubMed ID: 23651571.
    Abstract:
    A double signal amplification platform for ultrasensitive and simultaneous detection of ascorbic acid (AA), dopamine (DA), uric acid (UA) and acetaminophen (AC) was fabricated by a nanocomposite of ferrocene thiolate stabilized Fe₃O₄@Au nanoparticles with graphene sheet. The platform was constructed by coating a newly synthesized phenylethynyl ferrocene thiolate (Fc-SAc) modified Fe₃O₄@Au NPs coupling with graphene sheet/chitosan (GS-chitosan) on a glassy carbon electrode (GCE) surface. The Fe₃O₄@Au-S-Fc/GS-chitosan modified GCE exhibits a synergistic catalytic and amplification effect toward AA, DA, UA and AC oxidation. The oxidation peak currents of the four compounds on the electrode were linearly dependent on AA, DA, UA and AC concentrations in the ranges of 4-400 μM, 0.5-50 μM, 1-300 μM and 0.3-250 μM in the individual detection of each component, respectively. By simultaneously changing the concentrations of AA, DA, UA and AC, their electrochemical oxidation peaks appeared at -0.03, 0.15, 0.24 and 0.35 V, and good linear current responses were obtained in the concentration ranges of 6-350, 0.5-50, 1-90 and 0.4-32 μM with the detection limits of 1, 0.1, 0.2 and 0.05 μM (S/N=3), respectively.
    [Abstract] [Full Text] [Related] [New Search]