These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Continuous optical monitoring of cerebral hemodynamics during head-of-bed manipulation in brain-injured adults.
    Author: Kim MN, Edlow BL, Durduran T, Frangos S, Mesquita RC, Levine JM, Greenberg JH, Yodh AG, Detre JA.
    Journal: Neurocrit Care; 2014 Jun; 20(3):443-53. PubMed ID: 23653267.
    Abstract:
    INTRODUCTION: Head-of-bed manipulation is commonly performed in the neurocritical care unit to optimize cerebral blood flow (CBF), but its effects on CBF are rarely measured. This pilot study employs a novel, non-invasive instrument combining two techniques, diffuse correlation spectroscopy (DCS) for measurement of CBF and near-infrared spectroscopy (NIRS) for measurement of cerebral oxy- and deoxy-hemoglobin concentrations, to monitor patients during head-of-bed lowering. METHODS: Ten brain-injured patients and ten control subjects were monitored continuously with DCS and NIRS while the head-of-bed was positioned first at 30° and then at 0°. Relative CBF (rCBF) and concurrent changes in oxy- (ΔHbO2), deoxy- (ΔHb), and total-hemoglobin concentrations (ΔTHC) from left/right frontal cortices were monitored for 5 min at each position. Patient and control response differences were assessed. RESULTS: rCBF, ΔHbO2, and ΔTHC responses to head lowering differed significantly between brain-injured patients and healthy controls (P < 0.02). For patients, rCBF changes were heterogeneous, with no net change observed in the group average (0.3 ± 28.2 %, P = 0.938). rCBF increased in controls (18.6 ± 9.4 %, P < 0.001). ΔHbO2, ΔHb, and ΔTHC increased with head lowering in both groups, but to a larger degree in brain-injured patients. rCBF correlated moderately with changes in cerebral perfusion pressure (R = 0.40, P < 0.001), but not intracranial pressure. CONCLUSION: DCS/NIRS detected differences in CBF and oxygenation responses of brain-injured patients versus controls during head-of-bed manipulation. This pilot study supports the feasibility of continuous bedside measurement of cerebrovascular hemodynamics with DCS/NIRS and provides the rationale for further investigation in larger cohorts.
    [Abstract] [Full Text] [Related] [New Search]