These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Quantification and visualization of carotid segmentation accuracy and precision using a 2D standardized carotid map.
    Author: Chiu B, Ukwatta E, Shavakh S, Fenster A.
    Journal: Phys Med Biol; 2013 Jun 07; 58(11):3671-703. PubMed ID: 23656804.
    Abstract:
    This paper describes a framework for vascular image segmentation evaluation. Since the size of vessel wall and plaque burden is defined by the lumen and wall boundaries in vascular segmentation, these two boundaries should be considered as a pair in statistical evaluation of a segmentation algorithm. This work proposed statistical metrics to evaluate the difference of local vessel wall thickness (VWT) produced by manual and algorithm-based semi-automatic segmentation methods (ΔT) with the local segmentation standard deviation of the wall and lumen boundaries considered. ΔT was further approximately decomposed into the local wall and lumen boundary differences (ΔW and ΔL respectively) in order to provide information regarding which of the wall and lumen segmentation errors contribute more to the VWT difference. In this study, the lumen and wall boundaries in 3D carotid ultrasound images acquired for 21 subjects were each segmented five times manually and by a level-set segmentation algorithm. The (absolute) difference measures (i.e., ΔT, ΔW, ΔL and their absolute values) and the pooled local standard deviation of manually and algorithmically segmented wall and lumen boundaries were computed for each subject and represented in a 2D standardized map. The local accuracy and variability of the segmentation algorithm at each point can be quantified by the average of these metrics for the whole group of subjects and visualized on the 2D standardized map. Based on the results shown on the 2D standardized map, a variety of strategies, such as adding anchor points and adjusting weights of different forces in the algorithm, can be introduced to improve the accuracy and variability of the algorithm.
    [Abstract] [Full Text] [Related] [New Search]