These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Cross-linked enzyme aggregates of Mung bean epoxide hydrolases: a highly active, stable and recyclable biocatalyst for asymmetric hydrolysis of epoxides. Author: Yu CY, Li XF, Lou WY, Zong MH. Journal: J Biotechnol; 2013 Jun 20; 166(1-2):12-9. PubMed ID: 23659800. Abstract: A highly active and stable cross-linked enzyme aggregates (CLEAs) of epoxide hydrolases (EHs) from Mung bean, which plays a crucial role in synthesis of valuable enantiopure diols, were successfully prepared and characterized. Under the optimum preparation conditions, the activity recovery of CLEAs recorded 92%. The CLEAs were more efficient than the free enzyme in catalyzing asymmetric hydrolysis of styrene oxide to (R)-1-phenyl-1,2-ethanediol in organic solvent-containing biphasic system. The biocatalytic reaction performed in n-hexane/buffer biphasic system had a clearly faster initial reaction rate, much higher product yield and product e.e. value than that in aqueous medium. Moreover, the optimal volume ratio of n-hexane to buffer, reaction temperature, buffer pH value and substrate concentration for the enzymatic hydrolysis were found to be 1:1, 40 °C, 7.5 and 30 mM, respectively, under which the initial reaction rate, product yield and product e.e. value were 13.26 mM/h, 46% and 93.5%, respectively. The CLEAs retained more than 50% of their initial activity after 8 batches of re-use in phosphate buffer and maintained 53% of their original activity after 8 reaction cycle in biphasic system. The efficient biocatalytic process with CLEAs proved to be feasible on a 250-mL preparative scale, exhibiting great potential for asymmetric synthesis of chiral diols.[Abstract] [Full Text] [Related] [New Search]