These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Silica nanoparticle supported molecularly imprinted polymer layers with varied degrees of crosslinking for lysozyme recognition.
    Author: Chen H, Yuan D, Li Y, Dong M, Chai Z, Kong J, Fu G.
    Journal: Anal Chim Acta; 2013 May 24; 779():82-9. PubMed ID: 23663675.
    Abstract:
    Surface imprinting over nanosized support materials is particularly suitable for protein templates, considering the problems with mass transfer limitation and low binding capacity. Previously we have demonstrated a strategy for surface protein imprinting over vinyl-modified silica nanopartiles with lysozyme as a model template by polymerization in high-dilution monomer solution to prevent macrogelation. Herein, the synthesis process was further studied toward enhancement of the imprinting performance by examining the effect of several synthesis conditions. Interestingly, the feed crosslinking degree was found to have a great impact on the thickness of the formed imprinting polymer layers and the recognition properties of the resulting imprinted materials. The imprinted particles with a crosslinking degree up to 50% showed the best imprinting effect. The imprinting factor achieved 2.89 and the specific binding reached 23.3 mg g(-1), which are greatly increased compared to those of the lowly crosslinked imprinted materials reported previously. Moreover, the relatively high crosslinking degree led to no significant retarding of the binding kinetics to the imprinted particles, and the saturated adsorption was reached within 10 min. Therefore, this may be a promising method for protein imprinting.
    [Abstract] [Full Text] [Related] [New Search]