These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Phosphorylation accelerates geldanamycin-induced Akt degradation. Author: Su CH, Lan KH, Li CP, Chao Y, Lin HC, Lee SD, Lee WP. Journal: Arch Biochem Biophys; 2013 Aug 01; 536(1):6-11. PubMed ID: 23668972. Abstract: Hsp90 (Heat shock protein-90) is a cellular buffer against erroneous gene products and also plays an essential role in facilitating proper folding, maturation, and activity of its client proteins. The phosphatidylinositol-3 kinase (PI-3K)-Akt pathway transduces a survival signal involved in tumor development. The kinase activity of Akt depends on its association with Hsp90. Hsp90 inhibition causes Akt degradation, but the mechanism remains unclear. Several reports showed that the Hsp90 inhibitor geldanamycin (GA) induces Thr308 and Ser473 phosphorylations of Akt, however, it is still unknown about the significance of GA-induced Akt activation in degradation of the kinase. We treated Hela cells with GA to observe Akt degradation and found that LY294002 delayed Akt degradation. Mutation of Thr308 or Ser473 also caused delayed Akt ubiquitination and degradation. Inhibition of Akt dephosphorylation enhanced GA-mediated Akt degradation. In this report, we show that GA-mediated transient activation of Akt accelerates its association with the E3 ligase CHIP (C-terminal Hsp70-interacting protein)-mediated ubiquitination and subsequent proteasome degradation.[Abstract] [Full Text] [Related] [New Search]