These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: New type of single chain magnet: pseudo-one-dimensional chain of high-spin Co(II) exhibiting ferromagnetic intrachain interactions.
    Author: Tangoulis V, Lalia-Kantouri M, Gdaniec M, Papadopoulos Ch, Miletic V, Czapik A.
    Journal: Inorg Chem; 2013 Jun 03; 52(11):6559-69. PubMed ID: 23675782.
    Abstract:
    Two new six-coordinated high-spin Co(II) complexes have been synthesized through the reactions of Co(II) salts with dipyridylamine (dpamH) and 5-nitro-salicylaldehyde (5-NO2-saloH) or 3-methoxy-salicylaldehyde (3-OCH3-saloH) under argon atmosphere: [Co(dpamH)2(5-NO2-salo)]NO3 (1) and [Co(dpamH)2(3-OCH3-salo)]NO3·1.3 EtOH·0.4H2O (2). According to the crystal packing of compound 1, two coordination cations are linked with two nitrate anions into a cyclic dimeric arrangement via N-H···O and C-H···O hydrogen bonds. In turn, these dimers are assembled into (100) layers through π-π stacking interactions between inversion-center related pyridine rings of the dpamH ligands. The crystal packing of compound 2 reveals a 1D assembly consisting solely from the coordination cations, which is formed by π-π stacking interactions between pyridine rings of one of the dpamH along the [010] and another 1D assembly of the coordination cations and nitrate anions through the N-H···O hydrogen-bonding interactions along the [001] direction. All complexes were magnetically characterized, and a new approximation method was used to fit the magnetic susceptibility data in the whole temperature range 2-300 K on the basis of an empirical expression which allows the treatment of each cobalt(II) ion in axial symmetry as an effective spin S(eff) = 1/2. In zero-field, dynamic magnetic susceptibility measurements show slow magnetic relaxation below 5.5 K for compound 2. The slow dynamics may originate from the motion of broad domain walls and is characterized by an Arrhenius law with a single energy barrier Δr/k(B) = 55(1) K for the [10-1488 Hz] frequency range. In order to reveal the importance of the crystal packing in the SCM behavior, a gentle heating process to 180 °C was carried out to remove the solvent molecules. The system, after heating, undergoes a major but not complete collapse of the network retaining to a small percentage its SCM character.
    [Abstract] [Full Text] [Related] [New Search]