These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Therapeutic approaches of melatonin in microwave radiations-induced oxidative stress-mediated toxicity on male fertility pattern of Wistar rats. Author: Meena R, Kumari K, Kumar J, Rajamani P, Verma HN, Kesari KK. Journal: Electromagn Biol Med; 2014 Jun; 33(2):81-91. PubMed ID: 23676079. Abstract: Microwave (MW) radiation produced by wireless telecommunications and a number of electrical devices used in household or in healthcare institutions may adversely affects the reproductive pattern. Present study aimed to investigate the protective effects of melatonin (is well known antioxidant that protects DNA, lipids and proteins from free radical damage) against oxidative stress-mediated testicular impairment due to long-term exposure of MWs. For this, 70-day-old male Wistar rats were divided into four groups (n = 6/group): Sham exposed, Melatonin (Mel) treated (2 mg/kg), 2.45 GHz MWs exposed and MWs + Mel treated. Exposure took place in Plexiglas cages for 2 h a day for 45 days where, power density (0.21 mW/cm(2)) and specific absorption rate (SAR 0.14 W/Kg) were estimated. After the completion of exposure period, rats were sacrificed and various stress related parameters, that is LDH-X (lactate dehydrogenase isoenzyme) activity, xanthine oxidase (XO), ROS (reactive oxygen species), protein carbonyl content, DNA damage and MDA (malondialdehyde) were performed. Result shows that melatonin prevent oxidative damage biochemically by significant increase (p < 0.001) in the levels of testicular LDH-X, decreased (p < 0.001) levels of MDA and ROS in testis (p < 0.01). Meanwhile, it reversed the effects of MWs on XO, protein carbonyl content, sperm count, testosterone level and DNA fragmentation in testicular cells. These results concluded that the melatonin has strong antioxidative potential against MW induced oxidative stress mediated DNA damage in testicular cells.[Abstract] [Full Text] [Related] [New Search]