These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Endothelial FoxO1 is an intrinsic regulator of thrombospondin 1 expression that restrains angiogenesis in ischemic muscle. Author: Roudier E, Milkiewicz M, Birot O, Slopack D, Montelius A, Gustafsson T, Paik JH, DePinho RA, Casale GP, Pipinos II, Haas TL. Journal: Angiogenesis; 2013 Oct; 16(4):759-72. PubMed ID: 23677673. Abstract: Peripheral artery disease (PAD) is characterized by chronic muscle ischemia. Compensatory angiogenesis is minimal within ischemic muscle despite an increase in angiogenic factors. This may occur due to the prevalence of angiostatic factors. Regulatory mechanisms that could evoke an angiostatic environment during ischemia are largely unknown. Forkhead box O (FoxO) transcription factors, known to repress endothelial cell proliferation in vitro, are potential candidates. Our goal was to determine whether FoxO proteins promote an angiostatic phenotype within ischemic muscle. FoxO1 and the angiostatic matrix protein thrombospondin 1 (THBS1) were elevated in ischemic muscle from PAD patients, or from mice post-femoral artery ligation. Mice with conditional endothelial cell-directed deletion of FoxO proteins (Mx1Cre (+), FoxO1,3,4 (L/L) , referred to as FoxOΔ) were used to assess the role of endothelial FoxO proteins within ischemic tissue. FoxO deletion abrogated the elevation of FoxO1 and THBS1 proteins, enhanced hindlimb blood flow recovery and improved neovascularization in murine ischemic muscle. Endothelial cell outgrowth from 3D explant cultures was more robust in muscles derived from FoxOΔ mice. FoxO1 overexpression induced THBS1 production, and a direct interaction of endogenous FoxO1 with the THBS1 promoter was detectable in primary endothelial cells. We provide evidence that FoxO1 directly regulates THBS1 within ischemic muscle. Altogether, these findings bring novel insight into the regulatory mechanisms underlying the repression of angiogenesis within peripheral ischemic tissues.[Abstract] [Full Text] [Related] [New Search]