These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Thermotropic nematic order upon nanocapillary filling.
    Author: Huber P, Busch M, Całus S, Kityk AV.
    Journal: Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Apr; 87(4):042502. PubMed ID: 23679431.
    Abstract:
    Optical birefringence and light absorption measurements reveal four regimes for the thermotropic behavior of a nematogen liquid (7CB) upon sequential filling of parallel-aligned capillaries of 12 nm diameter in a monolithic, mesoporous silica membrane. No molecular reorientation is observed for the first adsorbed monolayer. In the film-condensed state (up to 1 nm thickness), a weak, continuous paranematic-to-nematic (P-N) transition is found, which is shifted by 10 K below the discontinuous bulk transition at T(IN)=305 K. The capillary-condensed state exhibits a more pronounced, albeit still continuous P-N reordering, located 4 K below T(IN). This shift vanishes abruptly upon complete filling of the capillaries. It could originate in competing anchoring conditions at the free inner surfaces and at the pore walls or result from the 10-MPa tensile pressure release associated with the disappearance of concave menisci in the confined liquid upon complete filling. The study documents that the thermo-optical properties of nanoporous systems (or single nanocapillaries) can be tailored over a surprisingly wide range simply by variation of the filling fraction with liquid crystals.
    [Abstract] [Full Text] [Related] [New Search]