These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: The promotion of endothelial cell attachment and spreading using FNIII10 fused to VEGF-A165.
    Author: Traub S, Morgner J, Martino MM, Höning S, Swartz MA, Wickström SA, Hubbell JA, Eming SA.
    Journal: Biomaterials; 2013 Aug; 34(24):5958-68. PubMed ID: 23683723.
    Abstract:
    Synergy in the downstream signaling pathways of the vascular endothelial growth factor receptor-2 (VEGFR-2) and the integrin αvβ3 is critical for blood vessel formation. Thus, agents that activate both receptors could possess efficient pro-angiogenic potential. Here, we created a fibrin-binding bi-functional protein (FNIII10-VEGF) consisting of the 10th type III domain of fibronectin (FNIII10) fused to a plasmin-resistant VEGF-A165 mutant (VEGF) that potentiated angiogenic processes when compared to the effect of the separate molecules. FNIII10-VEGF was able to bind both VEGFR-2 and integrin αvβ3. Intriguingly, cell attachment and spreading to immobilized FNIII10-VEGF was significantly enhanced compared to individual FNIII10 or VEGF proteins. Delivery of immobilized FNIII10-VEGF by covalent linkage to a fibrin matrix significantly enhanced the angiogenic response in an in vivo wound healing assay compared to soluble VEGF. Unexpectedly, the angiogenic response to fibrin-immobilized FNIII10-VEGF was reduced in comparison to the pro-angiogenic effect of fibrin-immobilized VEGF. Collectively, findings of this study corroborate a critical role for a subtle balance of the integrin-VEGF interplay in angiogenesis and provide insight in how engineered growth factors in concert with biomaterial matrices may offer a potent molecular/material approach to harness these interactions for therapeutic angiogenesis.
    [Abstract] [Full Text] [Related] [New Search]