These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Connexin43 confers Temozolomide resistance in human glioma cells by modulating the mitochondrial apoptosis pathway.
    Author: Gielen PR, Aftab Q, Ma N, Chen VC, Hong X, Lozinsky S, Naus CC, Sin WC.
    Journal: Neuropharmacology; 2013 Dec; 75():539-48. PubMed ID: 23688923.
    Abstract:
    Glioblastoma multiforme (GBM) is the most aggressive astrocytoma, and therapeutic options are generally limited to surgical resection, radiotherapy, and Temozolomide (TMZ) chemotherapy. TMZ is a DNA alkylating agent that causes DNA damage and induces cell death. Unfortunately, glioma cells often develop resistance to TMZ treatment, with DNA de-methylation of the MGMT promoter identified as the primary reason. However, the contributions from proteins that normally protect cells against cytotoxic stress in TMZ-induced apoptosis have not been extensively explored. Here, we showed that increasing the level of the gap junction protein, Cx43, in human LN18 and LN229 glioma cells enhances resistance to TMZ treatment while knockdown of Cx43 in these same cells sensitizes them to TMZ treatment. By expressing a channel-dead or a C-terminal truncation mutant of Cx43, we show that Cx43-mediated TMZ resistance involves both channel dependent and independent functions. Expression of Cx43 in LN229 cells decreases TMZ-induced apoptosis, as determined by Annexin V staining. Cx43-mediated chemoresistance appears to be acting via a mitochondrial apoptosis pathway as manifested by the reduction in Bax/Bcl-2 ratio and the release of cytochrome C. Our findings highlight additional mechanisms and proteins that contribute to TMZ resistance, and raise the possibility of increasing TMZ efficiency by targeting Cx43 protein. This article is part of the Special Issue Section entitled 'Current Pharmacology of Gap Junction Channels and Hemichannels'.
    [Abstract] [Full Text] [Related] [New Search]