These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Surface hydrophilic modification of polyethersulfone membranes by surface-initiated ATRP with enhanced blood compatibility.
    Author: Xiang T, Yue WW, Wang R, Liang S, Sun SD, Zhao CS.
    Journal: Colloids Surf B Biointerfaces; 2013 Oct 01; 110():15-21. PubMed ID: 23693035.
    Abstract:
    Surface-initiated atom transfer radical polymerization (SI-ATRP) was used to tailor the functionality of polyethersulfone (PES) membranes. A two-step method including nitration reaction and amination reaction was used to synthesize aminated polyethersulfone (PES-NH2) for the preparation of PES/PES-NH2 membranes. Covalently tethered hydrophilic polymer brushes of poly(N-vinylpyrrolidone) (PVP) were prepared via SI-ATRP at low temperature in an aqueous solvent. Attenuated total reflection-Fourier transform infrared (ATR-FTIR), scanning electron microscopy coupled with energy dispersive spectroscopy (SEM-EDS), and water contact angle were used to characterize the modified membranes surfaces. The PVP-grafted PES membranes showed lower protein adsorption and suppressed platelet adhesion compared with the pristine PES membrane. Moreover, the activated partial thromboplastin time (APTT) for the PVP-grafted PES membranes was increased. These results indicated that the surface hydrophilic modification by grafting PVP brushes provided practical application for the PES membranes with good blood compatibility.
    [Abstract] [Full Text] [Related] [New Search]