These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Speckle-constrained variational methods for image restoration in optical coherence tomography. Author: Yin D, Gu Y, Xue P. Journal: J Opt Soc Am A Opt Image Sci Vis; 2013 May 01; 30(5):878-85. PubMed ID: 23695318. Abstract: A number of despeckling methods for optical coherence tomography (OCT) have been proposed. In these digital filtering techniques, speckle noise is often simplified as additive white Gaussian noise due to the logarithmic compression for the signal. The approximation is not completely consistent with the characteristic of OCT speckle noise, and cannot be reasonably extended to deconvolution algorithms. This paper presents a deconvolution model that combines the variational regularization term with the statistical characteristic constraints of data corrupted by OCT speckle noise. In the data fidelity term, speckle noise is modeled as signal dependent, and the point spread function of OCT systems is included. The regularization functional introduces a priori information on the original images, and a regularization term based on block matching 3D modeling is used to construct the variational model in the paper. Finally, the method is applied to the restoration of actual OCT raw data of human skin. The numerical results demonstrate that the proposed deconvolution algorithm can simultaneously enhance regions of images containing detail and remove OCT speckle noise.[Abstract] [Full Text] [Related] [New Search]