These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Calretinin inputs are confined to motoneurons for upward eye movements in monkey. Author: Zeeh C, Hess BJ, Horn AK. Journal: J Comp Neurol; 2013 Oct 01; 521(14):3154-66. PubMed ID: 23696443. Abstract: Motoneurons of extraocular muscles are controlled by different premotor pathways, whose selective damage may cause directionally selective eye movement disorders. The fact that clinical disorders can affect only one direction, e.g., isolated up-/downgaze palsy or up-/downbeat nystagmus, indicates that up- and downgaze pathways are organized separately. Recent work in monkey revealed that a subpopulation of premotor neurons of the vertical eye movement system contains the calcium-binding protein calretinin (CR). With combined tract-tracing and immunofluorescence, the motoneurons of vertically pulling eye muscles in monkey were investigated for the presence of CR-positive afferent terminals. In the oculomotor nucleus, CR was specifically found in punctate profiles contacting superior rectus and inferior oblique motoneurons, as well as levator palpebrae motoneurons, all of which participate in upward eye movements. Double-immunofluorescence labeling revealed that CR-positive terminals lacked the γ-aminobutyric acid (GABA)-synthesizing enzyme glutamate decarboxylase, which is present in inhibitory afferents to all motoneurons mediating vertical eye movements. Therefore, CR-containing afferents are considered to be excitatory. In conclusion, a strong CR input is confined to motoneurons mediating upgaze, which derive from premotor pathways mediating saccades and smooth pursuit, but not from secondary vestibulo-ocular neurons in the magnocellular part of the medial vestibular nucleus. The functional significance of CR in these connections is unclear, but it may serve as a useful marker to locate upgaze pathways in the human brain.[Abstract] [Full Text] [Related] [New Search]