These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Physicochemical and biopharmaceutical characterization of amorphous solid dispersion of nobiletin, a citrus polymethoxylated flavone, with improved hepatoprotective effects. Author: Onoue S, Nakamura T, Uchida A, Ogawa K, Yuminoki K, Hashimoto N, Hiza A, Tsukaguchi Y, Asakawa T, Kan T, Yamada S. Journal: Eur J Pharm Sci; 2013 Jul 16; 49(4):453-60. PubMed ID: 23707470. Abstract: The present study aimed to develop an amorphous solid dispersion (SD) of nobiletin (NOB), a citrus polymethoxylated flavone, with the aim of improving its biopharmaceutical and hepatoprotective properties. SD formulation of NOB (NOB/SD) was prepared by wet-milling and subsequent freeze drying, and its stability and dissolution properties were characterized. The hepatoprotective effects and pharmacokinetic behavior of orally dosed NOB/SD were evaluated in rats. During the storage of NOB/SD for 4 weeks under accelerated conditions, there were no significant transitions in the appearance, particle size, and amorphousity of wet-milled NOB. In comparison with crystalline NOB, the NOB/SD exhibited significant improvement in the dissolution with a 10-fold higher dissolution rate. In a rat model of acute liver injury, repeated treatment with NOB/SD (2 mg NOB/kg) every 4 h led to marked attenuation of hepatic damage as evidenced by decreased ALT and AST, surrogate biomarkers for hepatic injury; however, crystalline NOB was found to be less effective. After oral administration of NOB/SD (2 mg NOB/kg) in rats, compared with crystalline NOB, improved pharmacokinetic behavior was observed with increases of bioavailability and hepatic delivery by ca. 7- and 6-fold, respectively, possibly leading to better hepatoprotection. Given the improved physicochemical and biopharmaceutical properties, the SD formulation strategy might be efficacious for enhancing the therapeutic potential of NOB.[Abstract] [Full Text] [Related] [New Search]