These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Identification of 15d-PGJ2 as an antagonist of farnesoid X receptor: molecular modeling with biological evaluation.
    Author: Xu X, Lu Y, Chen L, Chen J, Luo X, Shen X.
    Journal: Steroids; 2013 Sep; 78(9):813-22. PubMed ID: 23707573.
    Abstract:
    15-Deoxy-Δ(12,14)-PGJ2 (15d-PGJ2) is one of the major metabolites from prostaglandin D2 in arachidonic acid (AA) metabolic pathway. It was determined as a ligand of peroxisome proliferator-activated receptor γ (PPARγ) functioning potently in adipocyte development. However, the fact that 15d-PGJ2 exerts also PPARγ-independent biological actions has highly addressed its multi-target behavior. Here, we identified that 15d-PGJ2 was an antagonist of farnesoid X receptor (FXR), as investigated by surface plasmon resonance, fluorescence quenching and homo time-resolved fluorescence based analyses, and the coactivator-recruitment and luciferase-reporter related investigation. Assay of 15d-PGJ2 regulation on hFXRα target genes revealed that treatment of HepG2 cells with 15d-PGJ2 resulted in the stimulation of mRNA expressions of bile-salt export pump (BSEP), and the decrease of cholesterol 7a-hydroxylase (CYP7a1). In addition, functional assays indicated that 15d-PGJ2 promoted the conversion of cholesterol to bile acids in HepG2 cells. Moreover, molecular docking combined with molecular dynamics simulation was applied to develop the possible model of 15d-PGJ2 binding to hFXRα ligand binding domain (LBD) at atomic level, and the responsible residues for 15d-PGJ2/hFXRα-LBD interaction were thereby determined, which were further confirmed by SPR assays against hFXRα-LBD site-directed mutations. Given that hFXRα functions potently in the regulation of hepatic bile acid metabolism and lipid/glucose homeostasis, our current work is expected to help better understand the multi-target features of this PGD2 metabolite in biological pathways, and 15d-PGJ2 as a new discovered FXR antagonist might find its potential application in further anti-hypercholesterol research.
    [Abstract] [Full Text] [Related] [New Search]