These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Homologous series of rare-earth zinc arsenides REZn(2-x)As2·n(REAs) (RE = La-Nd, Sm; n = 3, 4, 5, 6). Author: Lin X, Mar A. Journal: Inorg Chem; 2013 Jun 17; 52(12):7261-70. PubMed ID: 23713992. Abstract: Four series of ternary rare-earth zinc arsenides have been prepared by reaction of the elements at 750 °C: RE4Zn(2-x)As5 forming for RE = La-Nd, Sm; and RE5Zn(2-x)As6, RE6Zn(2-x)As7, RE7Zn(2-x)As8 forming for RE = Ce, Pr, Nd, Sm. They crystallize in trigonal structure types in space group P3m1 with Z = 1 for RE4Zn(2-x)As5 and RE7Zn(2-x)As8, or space group R3m1 with Z = 3 for RE5Zn(2-x)As6 and RE6Zn(2-x)As7. Through the structural principle of intergrowing rocksalt-type [REAs] slabs of variable thickness within a parent CaAl2Si2-type structure containing Zn-deficient [Zn(2-x)As2] slabs built from edge-sharing Zn-centered tetrahedra, these ternary arsenides belong to a homologous series with the formulation REZn(2-x)As2·n(REAs) (n = 3, 4, 5, 6). Quaternary derivatives Ce4(Mn,Zn)(2-x)As5 and Ce6(Mn,Zn)(2-x)As7 were also obtained in which Mn partially substitutes for Zn. Band structure calculations predict that the electronic properties can be gradually modified from semiconducting to semimetallic behavior as more [REAs] slabs are introduced.[Abstract] [Full Text] [Related] [New Search]