These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Raman spectroscopic study of the frustrated spin 1/2 antiferromagnet clinoatacamite. Author: Liu XD, Zheng XG, Meng DD, Xu XL, Guo QX. Journal: J Phys Condens Matter; 2013 Jun 26; 25(25):256003. PubMed ID: 23719338. Abstract: Raman spectroscopy is a valuable and complementary tool for studying geometrically frustrated magnetic systems due to the intrinsic spin-phonon coupling. Here, we report on a Raman spectroscopic study of the geometrically frustrated spin 1/2 antiferromagnet microcrystalline clinoatacamite Cu2(OH)3Cl, focusing on the anomalous transition into the intermediate phase at T(c1) = 18.1 K. By measuring the temperature-dependent (295-4 K) full spectral profiles and main representative modes in spectral regions from 4000 to 95 cm(-1), we observed probable signatures of successive magnetic transitions near T(c1) = 18 K and T(c2) = 6.4 K in the Raman band frequencies and peak widths of the representative modes. Further, we observed a pronounced Raman spectroscopy background featuring a broad continuum at all temperatures. A quantitative analysis reveals that spin fluctuations may exist on a picosecond time scale in the intermediate phase. The short time scale falls out of the μSR time window; therefore, in the intermediate phase, the μSR study as reported in (2005 Phys. Rev. Lett. 95 057201) apparently only probed the local field of the ordered spins but overlooked the quickly fluctuating ones. This is likely to give a reasonable explanation of the fact that only a small entropy release occurs at T(c1) = 18 K although a long-range order is formed.[Abstract] [Full Text] [Related] [New Search]