These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: An interaction between Bcl-xL and the voltage-dependent anion channel (VDAC) promotes mitochondrial Ca2+ uptake. Author: Huang H, Hu X, Eno CO, Zhao G, Li C, White C. Journal: J Biol Chem; 2013 Jul 05; 288(27):19870-81. PubMed ID: 23720737. Abstract: The role of the antiapoptotic protein Bcl-xL in regulating mitochondrial Ca(2+) ([Ca(2+)]mito) handling was examined in wild-type (WT) and Bcl-xL knock-out (Bcl-xL-KO) mouse embryonic fibroblast cells. Inositol 1,4,5-trisphosphate-generating agonist evoked cytosolic Ca(2+) transients that produced a larger [Ca(2+)]mito uptake in WT cells compared with Bcl-xL-KO. In permeabilized cells, stepping external [Ca(2+)] from 0 to 3 μm also produced a larger [Ca(2+)]mito uptake in WT; moreover, the [Ca(2+)]mito uptake capacity of Bcl-xL-KO cells was restored by re-expression of mitochondrially targeted Bcl-xL. Bcl-xL enhancement of [Ca(2+)]mito uptake persisted after dissipation of the mitochondrial membrane potential but was absent in mitoplasts lacking an outer mitochondrial membrane. The outer membrane-localized voltage-dependent anion channel (VDAC) is a known Ca(2+) permeability pathway that directly interacts with Bcl-xL. Bcl-xL interacted with VDAC1 and -3 isoforms, and peptides based on the VDAC sequence disrupted Bcl-xL binding. Peptides reduced [Ca(2+)]mito uptake in WT but were without effect in Bcl-xL-KO cells. In addition, peptides reduced [Ca(2+)]mito uptake in VDAC1 and VDAC3 knock-out but not VDAC1 and -3 double knock-out mouse embryonic fibroblast cells, confirming that Bcl-xL interacts functionally with VDAC1 and -3 but not VDAC2. Thus, an interaction between Bcl-xL and VDAC promotes matrix Ca(2+) accumulation by increasing Ca(2+) transfer across the outer mitochondrial membrane.[Abstract] [Full Text] [Related] [New Search]