These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Site-specific mutagenesis and functional analysis of active sites of sulfur oxygenase reductase from Gram-positive moderate thermophile Sulfobacillus acidophilus TPY. Author: Zhang H, Guo W, Xu C, Zhou H, Chen X. Journal: Microbiol Res; 2013 Dec 14; 168(10):654-60. PubMed ID: 23726793. Abstract: Sequence alignments revealed that the conserved motifs of SORSa which formed an independent branch between archaea and Gram-negative bacteria SORs according to the phylogenetic relationship were similar with the archaea and Gram-negative bacteria SORs. In order to investigate the active sites of SORSa, cysteines 31, 101 and 104 (C31, C101, C104), histidines 86 and 90 (H86 and H90) and glutamate 114 (E114) of SORSa were chosen as the target amino acid residues for site-specific mutagenesis. The wild type and six mutant SORs were expressed in E. coli BL21, purified and confirmed by SDS-PAGE and Western blotting analysis. Enzyme activity determination revealed that the active sites of SORSa were identical with the archaea and Gram-negative bacteria SORs reported. Replacement of any cysteine residues reduced SOR activity by 53-100%, while the mutants of H86A, H90A and E114A lost their enzyme activities largely, only remaining 20%, 19% and 32% activity of the wild type SOR respectively. This study will enrich our awareness for active sites of SOR in a Gram-positive bacterium.[Abstract] [Full Text] [Related] [New Search]