These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Skin blood flow response to locally applied mechanical and thermal stresses in the diabetic foot.
    Author: Jan YK, Shen S, Foreman RD, Ennis WJ.
    Journal: Microvasc Res; 2013 Sep; 89():40-6. PubMed ID: 23727385.
    Abstract:
    Diabetic foot ulcers are one of the most common complications in diabetics, causing significant disabilities and decreasing the quality of life. Impaired microvascular reactivity contributes to the development of diabetic foot ulcers. However, underlying physiological mechanisms responsible for the impaired microvascular reactivity in response to extrinsic causative factors of foot ulcers such as mechanical and thermal stresses have not been well investigated. A total of 26 participants were recruited into this study, including 18 type 2 diabetics with peripheral neuropathy and 8 healthy controls. Laser Doppler flowmetry was used to measure skin blood flow at the first metatarsal head in response to a mechanical stress at 300mmHg and a fast thermal stress at 42°C. Wavelet analysis of skin blood flow oscillations was used to assess metabolic, neurogenic and myogenic controls. Our results indicated that diabetics have significantly decreased metabolic, neurogenic and myogenic responses to thermal stress, especially in the neurogenic and myogenic controls during the first vasodilatory response and in the metabolic control during the second vasodilatory response. Diabetics have a significantly decreased myogenic response to mechanical stress during reactive hyperemia. Our findings demonstrate that locally applied mechanical and thermal stresses can be used to assess microvascular reactivity and risk of diabetic foot ulcers.
    [Abstract] [Full Text] [Related] [New Search]