These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Sex hormonal modulation of interhemispheric transfer time.
    Author: Hausmann M, Hamm JP, Waldie KE, Kirk IJ.
    Journal: Neuropsychologia; 2013 Aug; 51(9):1734-41. PubMed ID: 23727572.
    Abstract:
    It is still a matter of debate whether functional cerebral asymmetries (FCA) of many cognitive processes are more pronounced in men than in women. Some evidence suggests that the apparent reduction in women's FCA is a result of the fluctuating levels of gonadal steroid hormones over the course of the menstrual cycle, making their FCA less static than for men. The degree of lateralization has been suggested to depend on interhemispheric communication that may be modulated by gonadal steroid hormones. Here, we employed visual-evoked EEG potentials to obtain a direct measure of interhemispheric communication during different phases of the menstrual cycle. The interhemispheric transfer time (IHTT) was estimated from the interhemispheric latency difference of the N170 component of the visual-evoked potential from either left or right visual field presentation. Nineteen right-handed women with regular menstrual cycles were tested twice, once during the menstrual phase, when progesterone and estradiol levels are low, and once during the luteal phase when progesterone and estradiol levels are high. Plasma steroid levels were determined by blood-based immunoassay at each session. It was found that IHTT, in particular from right-to-left, was generally longer during the luteal phase relative to the menstrual phase. This effect occurred as a consequence of a slowed absolute N170 latency of the indirect pathway (i.e. left hemispheric response after LVF stimulation) and, in particular, a shortened latency of the direct pathway (i.e. right hemispheric response after LVF stimulation) during the luteal phase. These results show that cycle-related effects are not restricted to modulation of processes between hemispheres but also apply to cortical interactions, especially within the right hemisphere. The findings support the view that plastic changes in the female brain occur during relatively short-term periods across the menstrual cycle.
    [Abstract] [Full Text] [Related] [New Search]