These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Characterization of organic phosphorus in lake sediments by sequential fractionation and enzymatic hydrolysis.
    Author: Zhu Y, Wu F, He Z, Guo J, Qu X, Xie F, Giesy JP, Liao H, Guo F.
    Journal: Environ Sci Technol; 2013 Jul 16; 47(14):7679-87. PubMed ID: 23731033.
    Abstract:
    The role of sediment-bound organic phosphorus (Po) on lake eutrophication was studied using sequential extraction and enzymatic hydrolysis by collecting sediments from Dianchi Lake, China. Bioavailable Po species including labile monoester P, diester P, and phytate-like P were identified in the sequential extractions by H2O, NaHCO3, and NaOH. For the H2O-Po, 36.7% (average) was labile monoester P, 14.8% was diester P, and 69.9% was phytate-like P. In NaHCO3-Po, 19.9% was labile monoester P, 17.5% was diester P, and 58.8% was phytate-like P. For NaOH-Po, 25.6% was labile monoester P, 7.9% was diester P, and 35.9% was phytate-like P. Labile monoester P was active to support growth of algae to form blooms. Diester P mainly distributed in labile H2O and NaHCO3 fractions was readily available to cyanobacteria. Phytate-like P represents a major portion of the Po in the NaOH fractions, also in the more labile H2O and NaHCO3 fractions. Based on results of sequential extraction of Po and enzymatic hydrolysis, lability and bioavailability was in decreasing order as follows: H2O-Po > NaHCO3-Po > NaOH-Po, and bioavailable Po accounted for only 12.1-27.2% of total Po in sediments. These results suggest that the biogeochemical cycle of bioavailable Po might play an important role in maintaining the eutrophic status of lakes.
    [Abstract] [Full Text] [Related] [New Search]