These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Scanning electron microscopic and electrophoretic observations on barium sulphate used to absorb clotting factors. Author: Howell RM, Deacon SL. Journal: Thromb Diath Haemorrh; 1975 Apr 30; 33(2):256-70. PubMed ID: 237336. Abstract: Electron microscopy and particle electrophoresis were found to be complementary techniques with which to complete the physical data from an earlier study on barium sulphates used to absorb clotting factors from serum. The differences revealed by scanning electron microscopy (S. E. M) in the physical shape of low and high density grades of barium sulphate particles appear to be of greater significance than charge as expressed by electrophoretic mobility, in determining whether or not precursor or performed factor Xa is eluted. This conclusion was based on the finding that at pH values close to 7, where the adsorption from serum occurs, all samples with the exception of natural barytes were uncharged. However as the high-density, or soil-grade, was found by S. E. M. to consist of large solid crystals it was suggested that this shape might induce activiation of factor X as a result of partial denaturation and consequent unfolding of the adsorbed protein. In contrast, uptake of protein into the centre of the porous aggregates revealed by S. E. M. pictures of low-density or X-ray grade barium sulphate may afford protection against denaturation and exposure of the enzyme site. The porous nature of particles of low-density barium sulphate compared with the solid crystalline forms of other grades accounts not only for its lower bulk density but also for its greater surface/gram ratio which is reflected by an ability to adsorb more protein from serum. Neither technique produced evidence from any of the samples to indicate the presence of stabilising agents sometimes used to coat particles in barium meals.[Abstract] [Full Text] [Related] [New Search]