These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Protective effect of short-term genistein supplementation on the early stage in diabetes-induced renal damage.
    Author: Kim MJ, Lim Y.
    Journal: Mediators Inflamm; 2013; 2013():510212. PubMed ID: 23737649.
    Abstract:
    Hyperglycemia-induced oxidative stress has been concerned in the development of diabetic nephropathy (DN), which may cause kidney damage associated with inflammation and fibrosis. This study has been conducted to investigate the role of genistein supplementation in an acute DN state. Mice with FBG levels more than 250 mg/dL after alloxan injection (single i.p., 150 mg/kg) were considered as diabetic. Diabetic mice (DM) were further subdivided according to their FBG levels, medium-high FBG (DMMH < 450 mg/dL) and high FBG (DMH; 450 mg/dL) and were administrated by an AIG-93G diet supplemented with different doses of genistein (0, 0.025 or 0.1%). After 2 weeks' treatment, the levels of kidney malondialdehyde (MDA), blood urea nitrogen (BUN), and plasma creatinine and lipid profiles, as well as oxidative stress and inflammation-related markers, were measured (P < 0.05). Genistein supplementation improved levels of FBG in the DMMH groups, but not in the DMH group, regardless of the treatment dose. Moreover, the supplementation attenuated kidney oxidative stress indicated by MDA, BUN, and plasma creatinine. In addition, genistein treatment decreased inflammatory markers such as nuclear factor kappa B (p65), phosphorylated inhibitory kappa B alpha, C-reactive protein, monocyte chemotactic protein-1, cyclooxygenase-2, and tumor necrosis factor-alpha and improved oxidative stress markers (nuclear-related factor E2, heme oxygenase-1, glutathione peroxidase, and superoxide dismutase isoforms) in treatment groups, regardless of the genistein treatment dose. Furthermore, genistein supplementation inhibited the fibrosis-related markers (protein kinase C, protein kinase C-beta II, and transforming growth factor-beta I) in the DN state. However, 0.1% genistein supplementation in diabetes with high FBG levels selectively showed a preventive effect on kidney damage. These results suggest that genistein might be a good protective substance for DN through regulation of oxidative stress and inflammation. In particular, genistein is more efficient in diabetes patients with medium-high blood glucose levels. Finally, it is required to establish the beneficial dosage of genistein according to blood glucose levels.
    [Abstract] [Full Text] [Related] [New Search]