These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Aortic regurgitation shortens Doppler pressure half-time in mitral stenosis: clinical evidence, in vitro simulation and theoretic analysis. Author: Flachskampf FA, Weyman AE, Gillam L, Liu CM, Abascal VM, Thomas JD. Journal: J Am Coll Cardiol; 1990 Aug; 16(2):396-404. PubMed ID: 2373818. Abstract: Mitral valve areas determined by Doppler pressure half-time were compared with areas obtained by planimetry in two groups of patients with mitral stenosis: 24 patients without aortic regurgitation and 32 patients with more than grade 1 aortic regurgitation. The severity of aortic regurgitation was assessed by color flow mapping; 17 patients had grade 2, 10 had grade 3 and 5 had grade 4 aortic regurgitation. Regression equations for pressure half-time area versus planimetry mitral valve area were calculated separately for the aortic regurgitation (r = 0.88) and the nonaortic regurgitation group (r = 0.86); analysis of covariance revealed a significant (p less than 0.001) difference between the two groups leading to overestimation of planimetry area by the pressure half-time method in the aortic regurgitation group. The mitral valve areas in the group without regurgitation were best calculated with the expression 239/T1/2 (r = 0.77) as compared with a best fit of 195/T1/2 (r = 0.85) for the aortic regurgitation group. To elucidate the mechanisms affecting pressure half-time in aortic regurgitation, an in vitro model of mitral inflow in the presence of varying regurgitant volumes and different ventricular chamber compliances was used. Aortic regurgitation shortened directly measured pressure half-time proportional to the regurgitant fraction but an increase in left ventricular compliance could offset this effect. Finally, in a mathematic model of mitral inflow the competing effects of aortic regurgitation and chamber compliance could be confirmed. In conclusion, aortic regurgitation results clinically in a significant net shortening of pressure half-time leading to mitral valve area overestimation. However, the effect is moderate and individually unpredictable because of changes in chamber compliance.[Abstract] [Full Text] [Related] [New Search]