These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: SLLISWD sequence in the 10FNIII domain initiates fibronectin fibrillogenesis.
    Author: Gee EPS, Yüksel D, Stultz CM, Ingber DE.
    Journal: J Biol Chem; 2013 Jul 19; 288(29):21329-21340. PubMed ID: 23740248.
    Abstract:
    Fibronectin (FN) assembly into extracellular matrix is tightly regulated and essential to embryogenesis and wound healing. FN fibrillogenesis is initiated by cytoskeleton-derived tensional forces transmitted across transmembrane integrins onto RGD binding sequences within the tenth FN type III (10FNIII) domains. These forces unfold 10FNIII to expose cryptic FN assembly sites; however, a specific sequence has not been identified in 10FNIII. Our past steered molecular dynamics simulations modeling 10FNIII unfolding by force at its RGD loop predicted a mechanical intermediate with a solvent-exposed N terminus spanning the A and B β-strands. Here, we experimentally confirm that the predicted 23-residue cryptic peptide 1 (CP1) initiates FN multimerization, which is mediated by interactions with 10FNIII that expose hydrophobic surfaces that support 8-anilino-1-napthalenesulfonic acid binding. Localization of multimerization activity to the C terminus led to the discovery of a minimal 7-amino acid "multimerization sequence" (SLLISWD), which induces polymerization of FN and the clotting protein fibrinogen in addition to enhancing FN fibrillogenesis in fibroblasts. A point mutation at Trp-6 that reduces exposure of hydrophobic sites for 8-anilino-1-napthalenesulfonic acid binding and β-structure formation inhibits FN multimerization and prevents physiological cell-based FN assembly in culture. We propose a model for cell-mediated fibrillogenesis whereby cell traction force initiates a cascade of intermolecular exchange starting with the unfolding of 10FNIII to expose the multimerization sequence, which interacts with strand B of another 10FNIII domain via a Trp-mediated β-strand exchange to stabilize a partially unfolded intermediate that propagates FN self-assembly.
    [Abstract] [Full Text] [Related] [New Search]