These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Inhibition of key enzymes linked to type 2 diabetes and sodium nitroprusside-induced lipid peroxidation in rat pancreas by water-extractable phytochemicals from unripe pawpaw fruit (Carica papaya). Author: Oboh G, Olabiyi AA, Akinyemi AJ, Ademiluyi AO. Journal: J Basic Clin Physiol Pharmacol; 2014 Feb; 25(1):21-34. PubMed ID: 23740684. Abstract: BACKGROUND: Various parts of unripe pawpaw (Carica papaya Linn) fruit have been reportedly used for the management or treatment of diabetes mellitus in folklore medicine. Therefore, the present study sought to investigate the inhibitory effects of the aqueous extract of different parts of unripe pawpaw fruit on key enzymes linked to type 2 diabetes (α-amylase and α-glucosidase) and sodium nitroprusside (SNP)-induced lipid peroxidation in rat pancreas in vitro. METHODS: The aqueous extracts of the unripe pawpaw (C. papaya) fruit parts were prepared (1:20 w/v) and the ability of the extracts to inhibit α-amylase, α-glucosidase and SNP-induced lipid peroxidation in rat pancreas in vitro was investigated. RESULTS: The results revealed that all the extracts inhibited α-amylase (IC50=0.87-1.11 mg/mL), α-glucosidase (IC50=1.76-2.64 mg/mL) and SNP-induced lipid peroxidation (IC50=1.99-2.42 mg/mL) in a dose-dependent manner. However, combination of the flesh, seed and peel in equal amounts had the highest inhibitory effect on α-amylase and α-glucosidase activities. CONCLUSIONS: Strong inhibitory activities of the unripe pawpaw fruit against key enzymes linked to type 2 diabetes and SNP-induced lipid peroxidation in rat pancreas could be part of the mechanism by which unripe pawpaw is used in the management/prevention of diabetes mellitus in folk medicine. However, combining the unripe pawpaw fruit parts in equal amounts exhibited synergistic properties on α-amylase and α-glucosidase inhibitory activities.[Abstract] [Full Text] [Related] [New Search]