These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Vibrational spectroscopy of the mineral meyerhofferite CaB3O3(OH)5·H2O--an assessment of the molecular structure. Author: Frost RL, López A, Xi Y, Scholz R, da Costa GM, Belotti FM, Lima RM. Journal: Spectrochim Acta A Mol Biomol Spectrosc; 2013 Oct; 114():27-32. PubMed ID: 23747431. Abstract: Meyerhofferite is a calcium hydrated borate mineral with ideal formula: CaB3O3(OH)5·H2O and occurs as white complex acicular to crude crystals with length up to ~4 cm, in fibrous divergent, radiating aggregates or reticulated and is often found in sedimentary or lake-bed borate deposits. The Raman spectrum of meyerhofferite is dominated by intense sharp band at 880 cm(-1) assigned to the symmetric stretching mode of trigonal boron. Broad Raman bands at 1046, 1110, 1135 and 1201 cm(-1) are attributed to BOH in-plane bending modes. Raman bands in the 900-1000 cm(-1) spectral region are assigned to the antisymmetric stretching of tetrahedral boron. Distinct OH stretching Raman bands are observed at 3400, 3483 and 3608 cm(-1). The mineral meyerhofferite has a distinct Raman spectrum which is different from the spectrum of other borate minerals, making Raman spectroscopy a very useful tool for the detection of meyerhofferite in sedimentary and lake bed deposits.[Abstract] [Full Text] [Related] [New Search]