These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Different modulation of Ptpn22 in effector and regulatory T cells leads to attenuation of autoimmune diabetes in transgenic nonobese diabetic mice. Author: Yeh LT, Miaw SC, Lin MH, Chou FC, Shieh SJ, Chuang YP, Lin SH, Chang DM, Sytwu HK. Journal: J Immunol; 2013 Jul 15; 191(2):594-607. PubMed ID: 23752610. Abstract: Ptpn22 encodes PEST domain-enriched tyrosine phosphatase (Pep), which negatively regulates TCR proximal signaling and is strongly associated with a variety of autoimmune diseases in humans. The net effect of Pep on the balance of immunity and tolerance is uncertain because of the simultaneous inhibition of TCR-mediated signaling of effector and regulatory T cells (T(regs)). In this study, we generated transgenic NOD mice that overexpressed Pep in T cells. The transgenic mice had a significantly lower incidence of spontaneous autoimmune diabetes, which was accompanied by fewer IFN-γ-producing T cells, and an increased ratio of CD4(+)Foxp3(+) T(regs)to CD4(+)IFN-γ(+) or to CD8(+)IFN-γ(+) T cells, respectively, in pancreatic islets. Transgenic T cells showed markedly decreased TCR-mediated effector cell responses such as proliferation and Th1 differentiation. By contrast, the inhibitory effect of transgenic Pep on TCR signaling did not affect the differentiation of T(regs) or their suppressive activity. Adoptive transfer experiments showed that transgenic splenocytes exhibited attenuated diabetogenic ability. To examine further the pathogenic features of transgenic T cells, we generated Ptpn22/BDC2.5 doubly transgenic mice and found reduced proliferation and Th1 differentiation in CD4(+) T lymphocytes with additional Pep in pancreatic lymph nodes but not in inguinal lymph nodes of NOD/SCID recipients. This finding indicates that transgenic Pep attenuates T cell functions in an islet Ag-driven manner. Taken together, our results demonstrate that Pep overexpression in T cells attenuates autoimmune diabetes in NOD mice by preferentially modulating TCR signaling-mediated functions in diabetogenic T cells but not in T(regs).[Abstract] [Full Text] [Related] [New Search]