These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Design, synthesis, and evaluation of novel VEGFR2 kinase inhibitors: discovery of [1,2,4]triazolo[1,5-a]pyridine derivatives with slow dissociation kinetics.
    Author: Oguro Y, Cary DR, Miyamoto N, Tawada M, Iwata H, Miki H, Hori A, Imamura S.
    Journal: Bioorg Med Chem; 2013 Aug 01; 21(15):4714-29. PubMed ID: 23755884.
    Abstract:
    For the purpose of discovering novel type-II inhibitors of vascular endothelial growth factor receptor 2 (VEGFR2) kinase, we designed and synthesized 5,6-fused heterocyclic compounds bearing a anilide group. A co-crystal structure analysis of imidazo[1,2-b]pyridazine derivative 2 with VEGFR2 revealed that the N1-nitrogen of imidazo[1,2-b]pyridazine core interacts with the backbone NH group of Cys919. To retain this essential interaction, we designed a series of imidazo[1,2-a]pyridine, [1,2,4]triazolo[1,5-a]pyridine, thiazolo[5,4-b]pyridine, and 1,3-benzothiazole derivatives maintaining a ring nitrogen as hydrogen bond acceptor (HBA) at the corresponding position. All compounds thus designed displayed strong inhibitory activity against VEGFR2 kinase, and the [1,2,4]triazolo[1,5-a]pyridine 13d displayed favorable physicochemical properties. Furthermore, 13d inhibited VEGFR2 kinase with slow dissociation kinetics and also inhibited platelet-derived growth factor receptor (PDGFR) kinases. Oral administration of 13d showed potent anti-tumor efficacy in DU145 and A549 xenograft models in nude mice.
    [Abstract] [Full Text] [Related] [New Search]