These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Vertical distribution profiles and diagenetic fate of synthetic surfactants in marine and freshwater sediments. Author: Corada-Fernández C, Lara-Martín PA, Candela L, González-Mazo E. Journal: Sci Total Environ; 2013 Sep 01; 461-462():568-75. PubMed ID: 23756216. Abstract: This manuscript deals with the presence and degradation of the most commonly-used surfactants, including anionic (linear alkylbenzene sulfonates, LAS, and alkyl ethoxysulfates, AES) and non-ionic (alcohol polyethoxylates, AEOs, and nonylphenol polyethoxylates, NPEOs) compounds, in sediments and pore water from several aquatic environments (Southwest, Spain). Different vertical distributions were observed according to the respective sources, uses, production volumes and physicochemical properties of each surfactant. Levels of nonionics (up to 10 mg kg(-1)) were twice as high as anionics in industrial areas and harbors, whereas the opposite was found near urban wastewater discharge outlets. Sulfophenyl carboxylic acids (SPCs), LAS degradation products, were identified at anoxic depths at some sampling stations. Their presence was related to in situ anaerobic degradation of LAS in marine sediments, whereas the occurrence of these metabolites in freshwater sediments was attributed to the existence of wastewater sources nearby. No significant changes in the average length of AEO and NPEO ethoxylated chains were observed along the sediment cores, suggesting that their biodegradation was very limited in the sampling area. This may be directly related to their lower bioavailability, as their calculated sediment-pore water distribution coefficients (log K(sw)), which showed that non-ionic surfactants examined in this study had greater sorption affinity than the anionic surfactants (e.g., 2.3±0.3 for NPEOs).[Abstract] [Full Text] [Related] [New Search]