These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Nicotinamide mononucleotide adenylyltransferase2 overexpression enhances colorectal cancer cell-kill by Tiazofurin.
    Author: Kusumanchi P, Zhang Y, Jani MB, Jayaram NH, Khan RA, Tang Y, Antony AC, Jayaram HN.
    Journal: Cancer Gene Ther; 2013 Jul; 20(7):403-12. PubMed ID: 23764899.
    Abstract:
    Colorectal cancer cells exhibit limited cytotoxicity towards Tiazofurin, a pro-drug metabolized by cytosolic nicotinamide mononucleotide adenylyltransferase2 (NMNAT2) to thiazole-4-carboxamide adenine dinucleotide, a potent inhibitor of inosine 5'-monophosphate dehydrogenase required for cellular guanylate synthesis. We tested the hypothesis that colorectal cancer cells that exhibit low levels of NMNAT2 and are refractory to Tiazofurin can be rendered sensitive to Tiazofurin by overexpressing NMNAT2. Transfection of hNMNAT2 resulted in a six- and threefold cytoplasmic overexpression in Caco2 and HT29 cell lines correlating with Tiazofurin-induced enhanced cell-kill. Folate receptors expressed on the cell surface of 30-50% colorectal carcinomas were exploited for cellular targeting with Tiazofurin encapsulated in folate-tethered nanoparticles. Our results indicated that in wild-type colorectal cancer cells, free Tiazofurin-induced EC50 cell-kill was 1500-2000 μM, which was reduced to 66-156 μM in hNMNAT2-overexpressed cells treated with Tiazofurin encapsulated in non-targeted nanoparticles. This efficacy was improved threefold by encapsulating Tiazofurin in folate-tethered nanoparticles to obtain an EC(50) cell-kill of 22-59 μM, an equivalent of 100-300 mg m(-2) (one-tenth of the approved dose of Tiazofurin in humans), which will result in minimal toxicity leading to cancer cell-kill. This proof-of-principle study suggests that resistance of colorectal cancer cell-kill to Tiazofurin can be overcome by sequentially overexpressing hNMNAT2 and then facilitating the uptake of Tiazofurin by folate-tethered nanoparticles, which enter cells via folate receptors.
    [Abstract] [Full Text] [Related] [New Search]