These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: RAZOR EX Anthrax Air Detection System for detection of Bacillus anthracis spores from aerosol collection samples: collaborative study. Author: Hadfield T, Ryan V, Spaulding UK, Clemens KM, Ota IM, Brunelle SL. Journal: J AOAC Int; 2013; 96(2):392-8. PubMed ID: 23767365. Abstract: The RAZOR EX Anthrax Air Detection System was validated in a collaborative study for the detection of Bacillus anthracis in aerosol collection buffer. Phosphate-buffered saline was charged with 1 mg/mL standardized dust to simulate an authentic aerosol collection sample. The dust-charged buffer was spiked with either B. anthracis Ames at 2000 spores/mL or Bacillus cereus at 20 000 spores/mL. Twelve collaborators participated in the study, with four collaborators at each of three sites. Each collaborator tested 12 replicates of B. anthracis in dust-charged buffer and 12 replicates of B. cereus in dust-charged buffer. All samples sets were randomized and blind-coded. All collaborators produced valid data sets (no collaborators displayed systematic errors) and there was only one invalid data point. After unblinding, the analysis revealed a cross-collaborator probability of detection (CPOD) of 1.00 (144 positive results from 144 replicates, 95% confidence interval 0.975-1.00) for the B. anthracis samples and a CPOD of 0.00 (0 positive results from 143 replicates, 95% confidence interval 0.00-0.0262) for the B. cereus samples. These data meet the requirements of AOAC Standard Method Performance Requirement 2010.003, developed by the Stakeholder Panel on Agent Detection Assays.[Abstract] [Full Text] [Related] [New Search]