These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Stabilization of Snail through AKT/GSK-3β signaling pathway is required for TNF-α-induced epithelial-mesenchymal transition in prostate cancer PC3 cells. Author: Wang H, Fang R, Wang XF, Zhang F, Chen DY, Zhou B, Wang HS, Cai SH, Du J. Journal: Eur J Pharmacol; 2013 Aug 15; 714(1-3):48-55. PubMed ID: 23769744. Abstract: Metastasis induced by chronic inflammation has been considered as a major challenge during cancer therapy. Epithelial-mesenchymal transition (EMT) is associated with cancer invasion and metastasis promoted by pro-inflammatory cytokine TNFα. However, the mechanisms underlying TNFα-induced EMT in prostate cancer cells is not entirely clear. Here we showed that EMT induced by longstanding stimulation with TNFα in prostate cancer PC3 cells is mediated by up-regulation of the transcriptional repressor Snail. TNFα-mediated EMT was characterized by acquiring mesenchymal fusiform morphology, increasing the expression of Vimentin and decreasing the expression of E-cadherin. Exposure to TNFα increased the expression of transcription factor Snail via post-transcriptional regulation process and induced Snail nuclear localization in PC3 cells. Moreover, overexpressed Snail in PC3 cells induced EMT. Conversely, suppressing Snail expression abrogated TNFα-induced EMT, suggesting that Snail plays a crucial role in TNFα-induced EMT in prostate cancer cells. Finally, we showed that TNFα time-dependently activated NF-κB, AKT, ERK, p38 MAPK signaling pathways, and elevated Snail stability by activating AKT pathway that subsequently inhibited GSK-3β activity. Taken together, these results reveal that stabilization of Snail via AKT/GSK-3β signaling pathway is required for TNFα-induced EMT in prostate cancer cells. This study offers a better understanding of TNFα-induced metastasis and provides an effective therapeutic strategy for prostate cancer treatment.[Abstract] [Full Text] [Related] [New Search]