These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Structural aspects of HLA class I epitopes reacting with human monoclonal antibodies in Ig-binding, C1q-binding and lymphocytotoxicity assays. Author: Duquesnoy RJ, Marrari M, Jelenik L, Zeevi A, Claas FH, Mulder A. Journal: Hum Immunol; 2013 Oct; 74(10):1271-9. PubMed ID: 23770250. Abstract: This study addresses the reactivity patterns of human cytotoxic HLA class I epitope-specific monoclonal antibodies in Ig-binding and complement component C1q-binding Luminex assays in comparison with complement-dependent lymphocytotoxicity data reported at the 13th International HLA Workshop. Some monoclonal antibodies reacted similarly with epitope-carrying alleles in all three assays but others showed different reactivity patterns. These reactivity differences were analyzed with HLAMatchmaker and we incorporated the concept that eplets are essential parts of structural epitopes which can contact the six Complementarity Determining Regions (CDRs) of antibody. The data show that technique-dependent reactivity patterns are associated with distinct differences between polymorphic amino acid configurations on eplet-defined structural epitopes. The findings have been viewed in context of antigen-antibody complex formation that results in the release of free energy necessary to stabilize binding and to induce conformational changes in the antibody molecule to expose the C1q binding site, the first step of complement activation. Moreover the amount of free energy should be sufficient to induce a conformational change of C1q thereby initiating the first stages of the classical complement cascade leading to lymphocytotoxicity. The complement-fixing properties of HLA antibodies require not only specific recognition of eplets but also depend on interactions of other CDRs with critical amino acid configurations within the structural epitope. Eplet-carrying alleles that lack such configurations may only bind with antibody. This concept is important to our understanding whether or not complement-fixing donor-specific HLA antibodies can initiate antibody-mediated rejection.[Abstract] [Full Text] [Related] [New Search]