These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Changes in proliferation, differentiation, fibroblast growth factor 2 responsiveness and expression of syndecan-4 and glypican-1 with turkey satellite cell age. Author: Harthan LB, McFarland DC, Velleman SG. Journal: Dev Growth Differ; 2013 Jun; 55(5):622-34. PubMed ID: 23772770. Abstract: Myogenic satellite cells are heterogeneous multipotential stem cells that are required for muscle repair, maintenance, and growth. The membrane-associated heparan sulfate proteoglycans syndecan-4 and glypican-1 differentially regulate satellite cell proliferation, differentiation, fibroblast growth factor 2 (FGF2) signal transduction, and expression of the myogenic regulatory factors MyoD and myogenin. The objective of the current study was to determine the effect of age on syndecan-4 and glypican-1 satellite cell populations, proliferation, differentiation, FGF2 responsiveness, and expression of syndecan-4, glypican-1, MyoD, and myogenin using satellite cells isolated from the pectoralis major muscle of 1-day-old, 7-week-old and 16-week-old turkeys. Proliferation was significantly reduced in the 16-week-old satellite cells, while differentiation was decreased in the 7-week-old and the 16-week-old cells beginning at 48 h of differentiation. Fibroblast growth factor 2 responsiveness was highest in the 1-day-old and 7-week-old cells during proliferation; during differentiation there was an age-dependent response to FGF2. Syndecan-4 and glypican-1 satellite cell populations decreased with age, but syndecan-4 and glypican-1 were differentially expressed with age during proliferation and differentiation. MyoD and myogenin mRNA expression was significantly decreased in 16-week-old cells compared to the 1-day-old and 7-week-old cells. MyoD and myogenin protein expression was higher during proliferation in the 16-week-old cells and decreased with differentiation. These data demonstrate an age-dependent effect on syndecan-4 and glypican-1 satellite cell subpopulations, which may be associated with age-related changes in proliferation, differentiation, FGF2 responsiveness, and the expression of the myogenic regulatory factors MyoD and myogenin.[Abstract] [Full Text] [Related] [New Search]