These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Pathophysiological mechanisms involving aggressive islet cell destruction in fulminant type 1 diabetes. Author: Tanaka S, Aida K, Nishida Y, Kobayashi T. Journal: Endocr J; 2013; 60(7):837-45. PubMed ID: 23774118. Abstract: Fulminant type 1 diabetes is characterized by a rapid onset of severe hyperglycemia and ketoacidosis, with subsequent poor prognosis of diabetic complications. This review summarizes new findings related to the pathophysiology of accelerated β-cell failure in fulminant type 1 diabetes. Immunohistological examination revealed the presence of enterovirus in pancreatic islet cells and exocrine tissues and hyperexpression of pattern recognition receptors (PRRs) including melanoma differentiation-associated antigen 5 (MDA5), retinoic acid-inducible gene-I (RIG-I), Toll-like receptor (TLR)3 and TLR4, essential sensors of innate immunity, in islet cells and mononuclear cells (MNCs) infiltrating islets. Interferon (IFN)-α and IFN-β, products of PRR cascades, were expressed in both islet cells and infiltrating MNCs. Phenotypes of infiltrating cells around and/or into islets were mainly dendritic cells, macrophages and CD8+ T cells. Islet β-cells simultaneously expressed CXC chemokine ligand 10 (CXCL10), IFN-γ and interleukin-18, indicating that these chemokines/ cytotoxic cytokines mutually amplify their cytoplasmic expression in the islet cells. These positive feedback systems might enhance adaptive immunity, leading to rapid and complete loss of β-cells in fulminant type 1 diabetes. In innate and adaptive/autoimmune immune processes, the mechanisms behind bystander activation/killing might further amplify β-cell destruction. In addition to intrinsic pathway of cell apoptosis, the Fas and Fas ligand pathway are also involved as an extrinsic pathway of cell apoptosis. A high prevalence of anti-amylase autoantibodies was recognized in patients with fulminant type 1 diabetes, which suggests that Th2 T-cell reactive immunity against amylase might contribute to β-cell destruction in fulminant type 1 diabetes.[Abstract] [Full Text] [Related] [New Search]